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Abstract--The transient free convection boundary-layer flow of a viscous and incompressible fluid adjacent 
to a semi-infinite vertical flat plate is investigated. It is assumed that for time t < 0 a steady state boundary- 
layer has been obtained in which there is a uniform temperature T, at large distances from the plate and 
the plate is at a temperature T,. Then at ‘I = 0 the temperature of the plate is suddenly changed to Tz and 
maintained at this value fort > 0. The solution is dependent upon two parameters, namely the ratio of the 
final teruperature above ambient to the initial temperature above ambient, R = AT,/AT, = 
(T2- T,)i(T, - T,), and the Prandtl number Pr. An analytical solution is presented which is valid at small 
values of ‘I!. A new phenomena in this class of problems that is obtained from the detailed numerical scheme 
is the existence of two solutions, only one of which is physically acceptable, to the finite-difference equations 
associated1 with the matching technique applied for times beyond that at which the step-by-step method 
breaks down. Results have been obtained for a range of values of the parameter R, when Pr = 1. 0 1997 

Elsevier Science Ltd. 

1. INTRODUCTION 

Transient free convection flows often exist in tech- 
nological applications where devices are either heated 
or cooled. The applications include, for example, the 
cooling of the core of a nuclear reactor in the case of 
power or pump failures, and the warming and cooling 
of electronic components. This type of transient pro- 
cess was pioneered by Illingworth [l], who studied 
the simpler circumstance of transient free convection 
adjacent to an infinite isothermal flat vertical surface 
and his analysis has been very much refined and gen- 
eralized since then. 

Sugawara and1 Michiyoshi [2] were the first to pre- 
sent results of a numerical analysis for the transient 
free convection adjacent to a semi-infinite isothermal 
vertical flat p1ai.e and an estimate of the total time 
duration of the transient process was reported. Siegel 
[3] used the KB.rman-Pohlhausen method to inves- 
tigate a similar flow situation and the time duration 
of the one-dimensional conduction regime, as well as 
the total transient time were presented. The boundary- 
layer thickness was found to reach a maximum whilst 
the heat transfer coefficient was a minimum during 
the transient procedure. Hellums and Churchill [4] 

t Author to whom correspondence should be addressed. 

and Carnahan et al. [5] have also conducted a numeri- 
cal study of this problem and shown that the effect of 
the leading edge propagates at a speed which is in 
excess of the maximum one-dimensional unsteady 
speed. Later, Ingham [6, 71 used four quite different 
numerical methods to solve this problem and con- 
cluded that all the results showed: (i) a departure 
from the unsteady one-dimensional solution before 
the theoretically predicted time, and (ii) as the mesh 
size decreases the progression from the unsteady solu- 
tion to the steady state solution is quicker, but not by 
means of a smooth transition. In summary, it should 
be mentioned that there is a vast amount of literature 
on the subject of transient free convection adjacent to 
a vertical flat plate and comprehensive reviews are 
given by Gebhart [8,9], Joshi [lo] and more recently 
by Pop et al. [ll]. 

In many industrial and environmental situations, 
transients do not start from quiescence, but from a 
previous heating and resulting flow condition. An 
example is a solar collector panel, when solar insu- 
lation suddenly changes, possibly due to changing 
cloud cover. An initial steady flow becomes a tran- 
sition, which ultimately may result in another steady 
flow condition, as in the models of Ingham [12, 131, 
Joshi and Gebhart [14] and Harris et al. [15, 161. 

The objective of the present paper is to perform a 
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NOMENCLATURE 

a value off; (0) required for the small u, characteristic velocity 
time analysis x, y Cartesian coordinates along the plate 

b value of (- & (0)) required for the and normal to it, respectively. 
small time analysis 

f non-dimensional, reduced Greek symbols 
streamfunction B volumetric coefficient of thermal 

F transformed function expansion 
5 non-dimensional velocity function, 6 boundary-layer thickness 

W% E tolerances in the numerical schemes 
G transformed temperature function % r non-dimensional similarity variables 
Gr, local Grashof number based on the e non-dimensional temperature function 

initial temperature difference AT, 0, R expressions defined in equations (37) 
h step length in q-direction for and (46) 

o<z<r,+ I,, I,, 1, expressions defined in equations 
ii step length in q-direction for (37) and (46) 

r,* < r < t, V kinematic viscosity 
HL system of non-linear algebraic 7 time 

equations r non-dimensional time 
H: system of linear algebraic equations ? value of r at which the transfer to the 
I% non-dimensional time increment for step-by-step method in q takes place 

z,*<z<r, AZ non-dimensional time increment for 
m number of grid spacings in the z- O<r<t,* 

direction for r,* < z < r, @ non-dimensional velocity function, 
n number of grid spacings in the q- aWz 

direction for r,* < 7 < 7, + streamfunction 
N number of grid spacings in the q- 0 relaxation parameter. 

direction for 0 < 7 < 7: 

Pt 4 variable coefficients in the governing Subscripts 
equation for r,* < 5 < 7, 0 value at 7 = 0 

Pr Prandtl number i,j evaluated at the ith andjth nodal 
R ratio of final characteristic points in the q- and r-directions, 

temperature to initial characteristic respectively 
temperature n actual numerical values achieved 

S sum of numerical solutions for velocity P exact values predicted 
functions over consecutive time steps W wall values 

t sum of numerical solutions for cc ambient condition. 
temperature over consecutive time 
steps Superscripts 

T fluid temperature * point where the step-by-step numerical 
TI initial constant wall temperature solution breaks down 

(7 < 0) ? associated with the step-by-step 
T2 final constant wall temperature (7 > 0) numerical solution in the q and 7 

AT, characteristic temperature (t < 0) variables 
AT, characteristic temperature (t > 0) 5 associated with the step-by-step 
u, u velocity components along x- and y- numerical solution in the 5 and 7 

axes, respectively variables. 

detailed theoretical study of the transient free con- 
vection from an isothermal semi-infinite vertical flat 
plate when the general transient arises from a sudden 
change in the level of the temperature of the plate. A 
steady input temperature T, is changed at the time 
t = 0 to a new steady level T2 and is maintained at 
this value for 7 > 0, whilst the ambient temperature is 
T,. First, an analytical solution is obtained, which is 

valid at small values of the non-dimensional time, 
r << 1, in a region close to the plate, i.e. in an inner 
layer, for the fluid velocity and temperature fields, as 
well as for the skin friction and the heat transfer rate 
at the plate. Then, a very detailed numerical solution 
of the full boundary-layer equations is presented for 
the whole transient from z = 0 to the steady state, ;t --) 
co, by using a modification of the step-by-step method 



proposed by Merkin [ 171 in combination with a finite- 
difference method similar to that devised by Dennis (5) 
[18]. The effects of the ratio R = ATJAT, = 
( T2 - T,)/(T, - T,,) on the velocity and temperature where 

fields together with the skin friction and the heat trans- 
fer rate at the plate are determined when the Prandtl 
number, Pr = 1. Other values of Pr, which are O(l), 
have been considered, but the general conclusions are 
the same as those obtained for Pr = 1 and, therefore, U,(x) = f(Gr,)‘:‘, AT, = T, -T,. (6) 
the results obtained have not been presented. 

Further, 9 is the non-dimensional similarity variable, 
6(x) is the boundary-layer thickness, U,(x) is the 

2. GOVERNING EQUATIONS 
characteristic velocity, AT, is the characteristic tem- 
perature, Gr, = g/IAT,x3/v’ is the local Grashof num- 

We consider the general transient free convection ber based on the initial temperature difference AT, 

boundary-layer flow adjacent to a semi-infinite ver- and $ is the streamfunction defined in the usual way, 

tical flat plate which is in a fluid at temperature T,. namely u = alC//ay and v = -a$/ax. 

The initial steady transport is the free convection The equations governing the evolution of the func- 

along the plate placed in a viscous and incompressible tions&, 2) and 6(~, 2) can be obtained by substituting 

fluid at a constant temperature T, with the plate at a expressions (5) into equations (l)-(3). It is found that 

uniform temperature T,. A transient begins when the these functions satisfy the pair of coupled equations : 
temperature T, is suddenly changed at time t = 0 to 
a new value T, and maintained at this value for z > 0. 
With the usual boundary-layer and Boussinesq 
approximations [I 91, the governing equations for the 
transient response at t > 0 are i a 2 

-5 & +e=o (7) 
(3 

au au au a% 
z +ua, we& = vav2 +gP(T- Tm) (2) +(;f-f+$;=O. (8) 

aT aT aT v a=T 
p"p"ay=pray2 (3) 

These equations are to be solved for t > 0, subject to 
the boundary conditions 

where x and y are the Cartesian coordinates along the f(O,z) = 0, 
plate and normal to it, respectively, u and v are the 

Z(O,r) = 0, qo, 7) = g , 
1 

fluid velocity components along the x- and y-axes, T 
is the fluid temperature, g is the acceleration due to T&3,7) = 0, B(m,7) = 0 (9) 
gravity, v is the kinematic viscosity, fi is the volumetric 
coefficient of thermal expansion and the Prandtl where AT, = T2- T,. 
number, Pr, is defined to be the ratio of the kinematic The transport phenomenon at 7 = 0 is steady and 
viscosity to the thermal diffusivity of the fluid. hence&, 0) =fO(q) and e(q, 0) = e,-,(q), say, so that, 

For time t < 0, the steady flow resulted from the from equations (7) and (8),f,(q) and 0,,(q) satisfy the 
uniform wall temperature T,, while for 7 > 0, the wall following coupled ordinary differential equations 
temperature is at the constant level T2. Therefore, 
equations (l)-(3) have to be solved subject to the f;;'+~fof;-;.r;+eo=o (IO) 
boundary conditions ff; +z Prfo& = 0. (11) 

~(0, y,z) = ~(0, y, f) = 0, T(0, y, z) = T, The boundary conditions associated with these equa- 
u(x,O,z) = u(x,O,f) = 0, T(x,O,z) = T, tions follow as similar reductions of the expressions 

(9) and are given explicitly by 
u(x,m,r)=O, T(x,oo,Q= T, (4) 

h(o) =fb(o) =o, e,(o) = 1, j-b(~) = e,(a) =o 
forr>OandO<x,y<a. 

For 7 > 0 the non-dimensional reduced stre- (12) 
amfunction, f, and the reduced temperature function, where prime denotes differentiation with respect to q. _ 
0, are introduced as A common starting point for the discussion of tran- 
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sient problems is to examine their behaviour for small 
times. A study of this transient process then reveals 
some of the basic features of the full boundary-layer 
equations and also provides a framework against 
which to develop the general transient process. This 
is where we begin our investigation. 

3. SMALL TIME SOLUTION, z << 1 

In the early development of the flow these exists an 
inner boundary-layer for z CC 1, which is described by 
equations (7) and (8). Outside this layer, the flow 
remains at the initial boundary-layer profile, as given 
byf&) and f&(q) in equations (10) and (11). Since 
the appropriate length scale for small times is the 
diffusion scale, r’12, we use the new independent vari- 
ables r and r and introduce the following definitions : 

f(r, 2) = 2r3’2f’(t, 7>, WI, 7) = WC, Q, 5 = &. 

(13) 

Substituting these variables in equations (7) and (8) 
yields 

+(;,+~)$+G=O (14) 

LE+r(_,+;,g)~ 
4Pr 852 

which have to be solved subject to the boundary 
(inner) conditions at the plate : 

F(0, r) = 0, g(O, r) = 0, G(0, z) = g. (16) 
I 

The transformation (13) is that used by Ingham [12, 
131 for the corresponding problem of a suddenly 
cooled vertical flat plate. 

The solution of equations (14) and (15) in the grow- 
ing inner layer is taken to match with that of the outer 
steady boundary-layer governed by equations (10) 
and (11). However, the solution in the outer steady 
boundary-layer region may be approximated at small 
11 by the series expansions 

Utl) - 1 -b?+0(V2) (17) 

where a =f’d(O) and b = -&(O) depend upon the 
value of Pr. These expressions forfg (0) and &, (0) are 
determined by solving equations (10) and (11) using 
the Nag routine DO2HAF, an algorithm which solves 
two-point boundary-value problems for systems of 

first-order, ordinary differential equations using a 
Runge-Kutta-Merson method and a Newton iter- 
ation in a shooting and matching technique. Thus, we 
find a = 0.908191 and b = 0.401033 for Pr = 1 [12]. 

Substitution of the transformation (13) into equa- 
tion (17) yields, for large values of [ 

F(<,r) - a52z-“2-3~3+~b5421’2+O(Z), 

G(& r) - 1 -2b&“2 +O(T). (18) 

The behaviour of the inner boundary-layer solution 
as 5 + co is to be matched with the steady outer layer 
solutionfo(q) and e,(q). It is the form of the asymp- 
totic expressions (18) which suggests in the first 
instance the appropriate perturbation solution for 
r << 1 as 

F(5,r) = z-“ZF~(:o(S)+F,(5)+z”2F2(5)+O(Z), 

G(5, r) = G,(5) +rli2G, (5) +O(+ (19) 

Substitution of these series expansions into equations 
(14) and (15) and equating the terms of the same 
powers of z gives rise to 

F;;‘+2cF’;-2Fb = 0 

CA + 2PrfjGb = 0 

F;‘+2<F;-4F; = -4Go 

G’,’ + 2PrijG’, - 2PrG, = 0 

F;“+2tjF’;-6F; = -4G, 

(20) 

where primes denote differentiation with respect to 5. 
Equation (20) must be solved subject to the following 
boundary conditions and asymptotic solutions : 

c(O) = c(O) = G,(O) = 0, i = 1,2,3,. . . , 

Fo(0)=Fb(O)=O, G,(O)=% 
I 

Fo(5) N d2, F,(t) N -;t3, 

f’z (5) wibt4,..., asr-+cc 

G,(5) - 1, G,(5) - -2b5,. . . , as 5 + co. (21) 

The solutions for Fi and Gi have been obtained in 
closed form for i = 0, 1 and 2 and therefore the result- 
ing expressions for the velocity, aF/ag, and tempera- 
ture, G, profiles may be readily established as 

x (1 + 2Prt2) erfc(JPrt) - 25 
[ i 

%e-PrC’ 
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G = 1 - 

(23) 

where the limiting value of the expression (22) for 
aF/ag as Pr -+ 1 is given by 

aF 
p&1/2+:! 1-g ( > I 

x 
[. 

t2 erfc([) - 5 ie-e2 
& 1 

-21j2 + ;bT’i’/” +O(T) (24) 

and erfc (5) = (2j,/k)sP e-l2 dt is the complementary 
error function. 

Expressions (22)-(24) are only applicable when 
v] CK 1, i.e. in the inner boundary-layer region. Small 
time solutions which are valid for all values of 1 are 
obtained by first writing equations (22)-(24) in terms 
of q and, subsequently, combining them with the outer 
solutionsf,(q) an.d @,(v). The resulting velocity, aflarh 
and temperature., 0, profiles are thus given by 

+ 11: r/2 Le-d4r + q2) 

fi 1 
f7=80-(l-~)erfc(fi&)+0(r1!2) 

(25) 

(26) 

where the limiting value of the expression (25) for 
af/iarl as Pr + 1 is given by 

-v I,2 _ 

ke 

-9*/4r 1 +w (27) 

at small times r. 
Important physical quantities are also the non- 

dimensional skin friction coefficient on the plate, 
a2f/a~2]9=,,, and the non-dimensional heat transfer on 
the plate, a@/&&=,, as functions of r. At small times 
these quantities have the following explicit series 
expansions : 

(28) 

4. NUMERICAL TECHNIQUES 

Precise details in the transition range between small 
and large value of r can only be obtained by a full 
numerical solution of the governing equations (7) and 
(8) under the boundary conditions (9). Furthermore, 
the range of validity of asymptotic estimates can only 
be assessed in comparison to exact numerical solu- 
tions. In pursuing such complete numerical solutions 
advantage can, however, be taken of the clearly estab- 
lished limiting solutions at small z and at steady state 
r = 0 and r = co. Equations (7) and (8) are solved 
numerically for representative values of the non- 
dimensional parameter R and Prandtl number, 
Pr = 1. The method we use is a modification of that 
described by Merkin [17] in combination with the one 
first proposed by Dennis [18] for the solution of the 
boundary-layer equations. This method was also 
recently used by Harris et al. [ 15,163 for the solution of 
transient free convection adjacent to a vertical surface 
embedded in a fluid-saturated porous medium. The 
method has to be modified to take care of the some- 
what different momentum boundary-layer equations 
and boundary conditions, but this causes no extra 
computational difficulties. 

The evolution of the pairs of functions aF/a& G 
and afar), 0 are separately governed by the pairs of 
coupled partial differential equations (14), (15) and 
(7), (8), respectively, which are each parabolic and 
thus can be integrated numerically using a step-by- 
step method similar to that described by Merkin [ 171, 
provided that the coefficients of a2F/a[az, aG/k, 
a’f/laq 87 and ae/ar all remain positive throughout the 
solution domain. This marching method enables the 
solution described by the functionsf,(q), ti,(r~) at time 
r = 0 to proceed in time and gives a complete solution 
for r < zz, where 7,* is the maximum value of r reached 
in the numerical scheme, which is less than the precise 
time rf satisfying 

;(T&f(o,7,7 = ~T:~(o,‘~ = 1. (30) 

The application of the step-by-step scheme to the 
pair of coupled equations (14) and (15) enables the 
accurate evolution of the temperature and velocity 
profiles to be determined over a developing inner layer 
whose width is increasing with time. If <, and q, 
are interpreted as being finite values of the spatial 
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variables at which the associated boundary conditions Gi,,+ I at time r = r,, , = rj+ AZ, and adopt the step- 
are to be applied, then at the exact time $ = (~_J2&J2 by-step finite-difference procedure described by Mer- 
we must transfer to the step-by-step scheme applied kin [ 171. This method involves first approximating the 
to equations (7) and (8). We again adopt the notation time derivatives by central differences and the remain- 
9, to denote the corresponding value of r which is ing terms by their averages over thejth and (j+ I)th 
reached in our numerical techniques. Clearly, the time steps. Central differences are then introduced to 
appropriate values oft, and rlrn will establish a critical estimate the spatial derivatives and the integrals in 
value of the parameter R above which r,* < fP so that equations (31) and (32) are estimated using quad- 
the marching method breaks down before the transfer rature formulae following from the trapezium rule. 
to the solution in the v, z variables takes place. Thus the finite-difference equations 

The matching of the solution at r = rx to the 
asymptotic steady state solution may now be achieved 
using a variation of the method first described by 
Dennis [18]. 

S~+,,j+f-2St,+l/2+S~-,,~+,/* 

+2(hS)2(12S:j+1/2-4~1)(S:j+,j2-2~i.j) 

-4(he)2S:,+1,2+4(hr)2t:j+lj2 

+@')*(~~+,,,+1,2-X,,,+,,2) 

x [(i- 1) -&(Q[,+ ,,2 -2@,)] = 0 (35) 

ti+I,j+,/2-2tf,~+,/2+t~-I,j+1/* 
e 

+2Pr(h')2(a2S:j+,,2-412,)(fEj+,,2-2Gi,j) 

+Pr(h')*(t~+,,j+,,*-f~--,j+,,2) 

x [(i- l)-I,&$,+,,,-20f,)] = 0 (36) 

represent approximations to the integro-differential 
equations (31) and (32) evaluated at { = (i- l)h’ and 
t = rj+iAr,, where 

S:j+,i2 = @i,j+ I +@i,j~ C,j+,/:! = Gt,,+ I + Gi,jt 

n:j+l,2 = ' 

r--l 

,tsf,j+ l/2 +%+ ,I*)+ C s$,j+ 112 
,'=2 

I, = -&+;, 1, = n:(Ar,)‘, 
I 

4.1. Numerical solution for 0 < z < fn 
The evolution of the velocity function, @ = aFlat, 

and the temperature function, G, are governed by the 
coupled integro-differential equations 

1 
7 l_f@ E=_Lac ( > 

2 

a7 4Pr al’ 

which have to be solved subject to the boundary con- 
ditions : 

@(O, z) = 0, G(O,z) = R (33) 

where the condition F(0, z) = 0 has been incorporated 
in equations (31) and (32), the conditions as 5 -+ cc : 

(34) 

where the undisturbed state remains, and the initial 
solution throughout the solution domain given by 
evaluating the profiles (22)-(24) at the small time 
r = r,,. In order to proceed with a numerical analysis 
of equations (31) and (32), the 5 space under inves- 
tigation has been restricted to finite dimensions by 
regarding 1; = r, to correspond to r = co. 

The finite spatial domain is divided into Nr equal 
grid spacings of length hS = <,/Ne. A variable time 
step is used and the value of this time step at the start 
of the jth time increment is denoted by ArP We also 
introduce the notation @i,jr Gi,j to represent the finite- 
difference approximations to the non-dimensional vel- 
ocity function @ and the temperature function G at 
the point 5 = (i- 1)h’ for some time T = zP 

Given a complete solution for mi,, Gisj i = 1, . . , , 
NE+ 1, at time rj we require the solution for @i,j+, , 

O:j = ~(@,,j+Q,j)+‘~ @f,j. (37) 
r'=2 

The boundary conditions (33) and (34) require that 

Sf,j+l/2 = 03 

AT2 
6,j+li2 = 2m~ 

I 

hi+,,,+,/2 = &(25&)+6d25,,b~). (38) 5 

The system of non-linear algebraic equations 
HL(Sf,j+,/2~~~~f s!V',j+,/29 4,j+,/2,..., &,j+,/2) =O 

and the system of algebraic equations 
H.Z(sb/+,/2,‘..9 @JE,j+,/29 4,j+,/2,..., tb,+*/2) =O 

comprising equations (35) and (36), respectively, thus 
define a set of 2(Nc- 1) equations for 2(N<- 1) 
unknowns. If SC(“) r.,+,,2 and f$‘?,,2 are initial approxi- 
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mations to the solutions of these systems, we firstly 
determine a better approximation for SEj, ,,2 by solv- 
ing the system Hl. By employing Newton’s method 
we can derive the following system of (NC- 1) linear 
equations 

i~(sL+,,2-siwl:;!~ -2l%!L (O) ( > aSfj+ 112 

= _H;(p?) ST’ ttp, tw ) ,.1+,/2,...? N,j+l/27 I,~+l/2~~‘~~ N,1+1/2 

(39) 

whose solution is achieved by decomposing the Jaco- 
bian matrix Jki = ,:aH:/aS{,j+ ,,2),o) into the product 
J = LU of a lower-triangular matrix L and an upper- 
triangular matrix U using the method proposed by 
Doolittle and pretented in Burden and Faires [20]. 
Thus the inversion of the linear system reduces to the 
separate solution of the two systems involving the 
matrices L and U by direct and backward substitution, 
respectively. Using this new estimate for S!,I+,,2, the 
solution of the syatem of equations Hz provides the 
next approximation for ?f,j+, ,,2. This linear system can 
be inverted using the Thomas algorithm for tri-diag- 
onal matrices applied to the associated matrix form 
of the equations Hi. This iterative process is repeated 
until the absolute difference between successive 
approximations for S[,+,,z and t:,+,,2 reach values 
less than some tolerance E: and a:, respectively. 

The initial time increment Azo at time 7 = z. is set to 
some prescribed srnall value and a time step doubling 
procedure is adopted. Given a complete solution at 
time 7j and a previous time step A7j-, the solution at 
time 7 = 7,+2A7,_ , is first calculated using the time 
increment 2A7j_, and then using two separate time 
increments of leng,th AZ,_, . If the absolute difference 
between the two solutions for Stj+,/z and tfFj+ ,iz 
obtained at zj+, are separately less than the pre- 
assigned tolerances ai and E:, respectively, then the 
time step is doubl’ed so that Azj = 267,_, . Otherwise 
the time increment remains unchanged. 

4.2. Numerical soiution for f,, < 7 < 7,* 

The evolution o’f the velocity function, 9 = af/aq, 
and the temperatu.re function, 0, are governed by the 
coupled integro-differential equations 

(40) 

( > l-i79 ae=_‘a2s 
a7 Pr aq2 

dy’ (41) 

which have to be solved subject to the initial and 
boundary conditions : 

9(0,7) = 0, @(O,z) = R (42) 

where the conditionf(0,7) = 0 has been incorporated 
in equations (40) and (41) and the conditions as q -) 
Co: 

9(?,, 7) = 0, WL, 7) = 0 (43) 

where the precise value of Q, is given by explicitly 
evaluating the expression q, = 2t,fi”. 

The finite spatial domain is divided into P equal 
grid spacings of length h’, = qm/iV. The variable time 
step and associated time step doubling procedure 
described in Section 4.1 are again used, subject to the 
error tolerances E: and a: associated with the solutions 
for 9 and 0, respectively. The notation sti,j, 8i,j will 
be used to represent the finite-difference approxi- 
mations to the non-dimensional velocity function f 
and the temperature function 0 at the point 
9 = (i- l)h* for some time 7 = zj. 

Employing the step-by-step procedure similar to 
that devised by Merkin [17], and described in Section 
4.1, we thus obtain the following finite-difference 
equations : 

-sy_ l,j+,/2) 
[ 

n3QT,j+,,2+ il,@?j 1 = O P) 
+2WW2 ( ~ilS:i+l/2- $ 

> 

(C!j+lj* -28,j) 
I 

+Pr(h")2(t~+:,j+~,2-tl-~l,j+~,2) 

[ 

1 
X Is!Ayj+ 112 + ,l,@Tj 1 = 0 

(45) 

representing approximations to the integro-di&r- 
ential equations (40) and (41) evaluated at 
v = (i- l)P and 7 = 7,-+:65, where 

Z,j+1/2 = pi,j+ 1 +Ft,,, C,j+*/2 = e,j+l +hj, 

nZj+l/2 = 2 1(s:,j+lj*+sli+Ij2)+'~ Z,j+L/2 
i' = 2 
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(46) 

and 1, is defined in equation (37). The boundary con- 
ditions (42) and (43) require that 

S:,l+,,* = Of Xb+I,j+1/2 = O, 

The two systems of algebraic equations comprising 
equations (44) and (45) can now be separately solved 
by following the procedure described in Section 4.1, 
where convergence is said to have been achieved when 
the absolute error between successive approximations 
for W,j+i/2 and C!,+ 1,~ reach values less than some 
tolerances a! and E:, respectively. 

4.3. Numerical solution for z,* < z < co 
At large times the solutions for the non-dimensional 

streamfunction f(s, z) and the temperature function 
fI(q, r) are known to approach the steady state profiles 
f(v, co) and Q(q, co) associated with the constant tem- 
perature difference AT2 at the plate. The solutions 
of the ordinary differential equations governing this 
second steady state can be obtained as similarity solu- 
tions of equations (lo)-(12), from which it can be 
shown that 

f(Y/, co) = R”4&(@“4), IQ, co) = R8&R”4). 

(48) 

The numerical solution described in Sections 4.1 
and 4.2 eventually breaks down at time z = 7: because 
of the coefficients of a*fiarl ar and ati/& become small 
and are tending to negative values in part of the 
boundary-layer. The matching of the steady state solu- 
tion (48) at large times with that which is valid at 
r = 7: is now achieved using an adaptation of the 
method of Dennis [ 181. 

It is convenient to write the governing equations (7) 
and (8) in the form 

(49) 

where 

i aze ae ae 
--+P&=qa., 
Pr ar12 

p(q,z) =;f-;+, q(q,r) = l-i7F (52) 

and q(q, 7) > 0 for all YI when 7 < 7:. 
The system of equations (49)-(52) must now be 

solved subject to the boundary conditions that the 

solution must coincide with that obtained by the step- 
by-step marching method at 7 = 7,*, and that at some 
large but finite time 7 = 7, the solution is given by the 
steady state analysis. The value of 7, may be varied, 
but must be taken to be large enough for any further 
increase to have a negligible effect on the whole solu- 
tion for 7,* < 7 < 7m. Thus the complete set of bound- 
ary conditions is given by 

p(fl, 73 = 9x4, ~1~73 = em) 

f(rj,Zm) = R"4fO(qR"4), P(?/,z,) = Pfi)(rp), 

eh7,) = Re,ww 

f(O,7) = 0, S(O,z) = 0, e(o,7) = R, 7:< 7 < 7m 

F&7) = 0, t&,7) = 0, 7,*< 7 < 7,. (53) 

A rectangular finite-difference grid with sides par- 
allel to the q and 7 directions is constructed using n 
spatial and m temporal grid intervals and cor- 
responding grid sizes h” = q,/n and k” = (7, -7*)/m, 
respectively. A finite-difference approximation to 
equations (50) and (51) is then achieved by replacing q 
derivatives by central-differences and the 7 derivatives 
CJZJr/ar and aQ/az by either a backward or forward 
difference depending on whether q(q, 7) > 0 or 
q(q, 7) < 0, respectively. This formulation, using 
backward or forward differences, ensures that the 
matrix problem associated with our system of equa- 
tions, along a line of constant 7, remains diagonally 
dominant, in the sense described by Varga [21], and 
enables a convergent solution to be achieved using 
standard iterative techniques. Thus, equations (50) 
and (51) become 

- 
( 

2-t ; (qisjl + ;kFi,, Fi,j+Ke,j 
> 

= ;qi,j3i:, (54) 

(i + ~i;p,i)~i+l,j+ (i - ihPi,j)Bi_,,, 

-(~+~,qj,j,)S.,j=~qi,j~~j (55) 

for 2 < i < n and 2 <j < m, where sfj and f?:, are 
defined by 

F-* =$Z_ ‘.I I,,+ I, e?, = ei,j+I if qi,, < 0 (56) 

and 

F”iT, = -9i,j- 1, e,f, = -e+, ifq,, > 0 

and fi,j =_g((i- I)&, 7,*+ (j- l)rz> &j = O((i- I)h, 
7.*+ (j- 1)k). Furthermore, the boundary conditions 
(53) require that 
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Fj,, = P,*((i-l)i;>, ei,, = @((i-1$), 

l<i<n+l 

&f&i+, == R”“fO((i_ l)h^R”4), 

~i,nl+ 1 = W’f&((i- 1)/&l/4), 

&tl+ 1 = R&l:(i- l)W’4), 1 < i < n+ 1 

fiej=O, F,,j=O, 8,,j=R, l<j<m+l 

9 n+l,j = O, en+l,j =O, l<j<m+l. (57) 

To start the iterative scheme we must prescribe 
initial values off, 9 and 0 throughout the solution 
domain. An approximation to f(q, zn*) is achieved by 
integrating equation (49) using the quadrature for- 
mulae following from the trapezium rule. Thus initial 
values off, Y and 8 can be assumed such that they 
follow a linear variation from the solutions at z = T,* 
to t = 7,. Initial a.pproximations for the functions p 
and q follow from equation (52) by using a central- 
difference for the term af/laz. 

The iterative procedure for solving the finite-differ- 
ence system (54), (55) and (57) now proceeds as 
follows : 

(i) Fix the values off, p and q throughout the 
domain and perform one complete sweep of the sys- 
tem (54), (55) and (57) to calculate the new values of 
9 and 0. At each point of the domain gi,j satisfies a 
quadratic equation which can be solved exactly using 
the updated value for Bi,,. The grid points are swept 
along lines of constant z in the increasing q direction, 
starting from 5 = ~,*+k” and finishing at t = z, -k. 
To increase the rate of convergence a successive under- 
relaxation procedure was employed with relaxation 
factor w. 

(ii) Integrate the differential equation (49) step- 
by-step along each line of constant 7, using quadrature 
formulae based on the trapezium rule. 

(iii) Using central differences to approximate the 
derivative af/iaz, values of p and q are re-calculated 
throughout the domain. 

(iv) Continue to perform steps (i)-(iii) until con- 
vergence, i.e. until the average of the absolute differ- 
ence in each of 9: and tl over the domain between 
successive iterations fall below the prescribed tol- 
erances E: and E:, respectively. 

5. RESULTS AND CONCLUSIONS 

As mentioned in Section 3, the Nag routine 
D02HAF was used to solve the coupled ordinary 
differential equations (10) and (1 I) subject to the 
boundary conditions (12). In this numerical procedure 
an absolute error tolerance must be supplied and the 
upper range of integration must be specified at some 
finite value instead of infinity. In all the results pre- 
sented in this paper a tolerance of 10m6 and an end- 
point of 9 = 15 were used as it was found that any fur- 
ther decrease and increase, respectively, of the values 

did not produce results which showed further signifi- 
cant variation. In the discussion of the results that 
follows we concentrate on the cases R = 0.5 and 2 
when the value of the Prandtl number, Pr = 1. 

5.1. Resultsfor 0 < 7 < Z;, 
The restriction to a finite dimensional c space was 

achieved by taking 5, = 10. The effect on the numeri- 
cal scheme of variations from this value of [,, while 
keeping h’ constant, was investigated and it was con- 
cluded that any larger value of l, produced results 
which were indistinguishable from those presented in 
the figures. Thus, the precise time at which transfer to 
the method of Section 4.2 takes place is Tp = 0.5625, 
taking q, = 15. 

The values of the tolerance E;, ET, E: and E: as 
individual average errors over the (N<- 1) unknown 
grid points were taken to be E; = 10m4, E: = 10m6, 
E: = lo-’ and E: = lo-*. More restrictive values of 
both tolerances were considered and discovered to 
produce numerical results which did not show any 
significant variation. The observation that smaller 
values of E; and E: produce almost identical results 
follows from the fact that the iterative solutions of the 
non-linear systems of algebraic equations (35) and 
(36) each rapidly approach limiting values and satisfy 
their convergence criteria after only a few iterations. 

The initial time z,, and first time increment AZ, were 
taken to be z,, = 5 x 10-j and AZ, = lo-* in all the 
calculations presented in this paper. This value of 20 
was found to be the optimum value for the initial time 
which produced solutions conforming to the small 
time evolutions most accurately. Any smaller initial 
time increment was soon increased after several time 
steps by the doubling procedure described in Section 
4.1 so that subsequent values of AZ at corresponding 
times were very similar to those obtained using 
At,, = lo-* and therefore smaller values of AZ,, pro- 
duced almost identical values for the non-dimensional 
temperature. For both the ratios R = 0.5 and 2, the 
time step doubling criterion was satisfied 19 times 
leading to a final time increment of 5.24 x 10m3 at the 
time z = ?,. 

The main source of variation in the solutions for 
the non-dimensional fluid temperature Q,t) = 
G(&, z), Z) and velocity function aflaq(q, T) = z(aF/ 
ag)([(q,z),z) arise by considering changes in the 
number of grid spaces Nt. It was observed that 
as Ns increased and, consequently, h’ decreased, 
the initial development of the numerical solution 
approached that of the small time solution. The 
values of Nt considered here were Ns = 200, 400, 
800, 1600 and 3200 with corresponding values of 
hr = 0.05, 0.025, 0.0125, 0.00625 and 0.003125, 
respectively. A comparison of the values of the non- 
dimensional skin friction coefficient at the plate 
a2f/iaq2(0, 2) and the non-dimensional heat transfer on 
the plate q,(r) are presented in Tables l(a) and (b), 
respectively, for each value of NC along with the cor- 
responding small time solutions (28) and (29) at vari- 
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Table 1. Comparison of the small time solutions with the step-by-step solutions evaluated at the plate for the case R = 2, as 
predicted by different grid spacings in the numerical scheme 

Non-dimensional 

Numerical solution using N = NC = W grid spacings 
Small time 

N = 200 N = 400 N = 800 N = 1600 N = 3200 solution 

(a) Skin friction coefficient and the small time solution (28) 
0.0005 0.92074 0.92079 
0.0050 0.94786 0.94803 
0.0500 1.03356 1.03410 
0.1000 1.08528 1.08606 
0.5000 1.29735 1.29926 
1 .oooo 1.43932 1.44113 
2.0000 1.54510 1.54623 

(b) Heat transfer and the small time solution (29) 
0.0005 -25.6225 -25.6299 
0.0050 - 8.3775 - 8.3793 
0.0500 - 2.9248 - 2.9254 
0.1000 -2.1875 -2.1879 
0.5000 -1.2150 - 1.2152 
1 .oooo - 1 SKI48 - 1.0049 
2.0000 -0.9423 -0.9427 

0.92080 0.92080 0.92081 0.92081 
0.94807 0.94808 0.94808 0.94809 
1.03423 1.03427 1.03427 1.03435 
1.08626 1.08630 1.08632 1.08660 
1.29974 1.29986 1.29989 1.30713 
1.44158 1.44169 1.44172 1.47238 
1.54651 1.54658 1.54660 1.70608 

-25.6318 -25.6322 -25.6323 - 25.6324 
-8.3799 -8.3800 - 8.3800 - 8.3799 
- 2.9256 -2.9256 -2.9256 -2.9242 
-2.1880 -2.1881 -2.1881 -2.1852 
- 1.2153 - 1.2153 - 1.2153 -1.1989 
- 1.0050 - 1.0050 - 1.0050 - 1.9652 
-0.9428 -0.9428 - 0.9248 - 0.8000 

ous values of r for the case R = 2. Table l(b) illus- 
trates that the numerical solutions for the heat transfer 
for different mesh sizes vary most at small times when 
the finest grid produces the best approximation to the 
small time solution, but for larger times, when the 
small time solution becomes invalid, the five solutions 
agree closely. In Table l(a), the numerical solutions 
for the skin friction for different meshes initially follow 
the small time solution, but inaccuracies develop in 
the coarser grids as time proceeds. A similar behaviour 
was observed for the case R = 0.5 as the mesh size 
was refined. The solutions for 0(~, r) and &/iarl(q, 7) 

are now continued using the method described in Sec- 
tion 4.2 which completes the step-by-step solution 
method using the independent variables q and 7. 

Figures 1 and 2 show the variation of the profiles 
of O(Q 7) and afiaq(q, T), respectively, at various times 
T calculated using he = 0.00625, for R = 0.5 and 2. 
The slight improvement in accuracy of the numerical 
solution as a whole is not felt to be justified for the 
additional computational time required by smaller 
values of hS. By plotting the steady state profiles as 
predicted by the Nag routine solution of the system 
of equations (10) and (11) and appropriate similarity 
solutions, the transition from r = 0 to r = cc is clearly 
illustrated. The non-dimensional temperature and vel- 
ocity function profiles demonstrate that initially the 
effects of the change in surface temperature of the 
plate are not felt near the outer edge of the boundary- 
layer. 

The evolution of the non-dimensional skin friction 
coefficient at the plate a*fja#(O, 7) with time 7 is illus- 
trated in Fig. 3 for R = 0.5 and 2, where hS = 0.00625 
has again been used. The numerical, transient solution 
is shown to develop closely following the small time 
solution (28) and is graphically almost identical when 
7 < 0.6 and r < 0.3 for R = 0.5 and 2, respectively. 

Similar tendencies have been observed for the non- 
dimensional heat transfer on the plate q,(7) and so 
these figures have not been included here. 

5.2. Results for f,, < 7 < 7,* 

The restriction to a finite dimensional r~ space was 
achieved by taking n_ x 15, where any larger value 
of q, produced results which were indistinguishable 
from these presented in the figures. The numerical 
value of q, = 2r,fA12 was calculated to be 
qrn = 14.9206 for both R = 0.5 and 2. 

The values of the tolerances as individual average 
errors over the (W-- 1) unknown grid points were 
taken to be equal to the corresponding tolerances set 
in Section 5.1, namely E; = E: = 10-4, 
&: = a: = lo-6 , E: = E: = lo-’ and E: = .a: = lo-‘. 
Furthermore, the number of spatial grid points and 
final time increment at r = 5, used in the technique 
described in Section 4.1 were continued to the method 
described here, so that P = 1600 and 
hq = qm/IP x 0.00933. A comparison of the use of 
different spatial steps is presented in Table 1 for R = 2, 
whereby no significant improvement in accuracy is 
demonstrated with a reduction in this value for h”. 

The time rz, denoting the largest value of 7 reached 
in the numerical scheme before 7;, defined by equation 
(30) was found to be approximately 7,* = 4.9 and 
7: = 2.6 for R = 0.5 and 2, respectively. In order to 
progress the time 7,* towards the accurate value 7:, the 
time increments were systematically reduced in this 
step-by-step method. Starting with the time increment 
defined from the time step doubling routine, the time 
steps were halved when their current values was such 
as to cause the method to break down if another time 
step was performed. This process was repeated until 
the value of the time increment reached A7 x 5 x 1 O-3. 
The solution for 13(q,7) and afllaq(q,7) is now con- 
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----- Steady solution at T = 0, &,(q) 

2 
Numerical solution at 7 = 0 02040 
Numerical solution at T = 0:21184 

+ Numerical solution at T = 2.96829 
-A- Numerical solution at r = 4.83475 
- - - Steady solution at large 7, RB,(~Rt) 

0 i 2 3 4 6 

11 
Fig. 1. Variation of the non-dimensional temperature !3(q, T) as a function of r~ at various values of z and 

the steady state solutions at z = 0 and r = co : (a) R = 0.5; (b) R = 2. 

tinued using the method described in Section 4.3 ~?‘f/c%f(O,~) approach the steady state solution at 
which matches the temperature profile e,*(q) and vel- z = co, predicted by the similarity solution of the 
ocity profile (afiaq),yq), at which the method coupled equations (10) and (1 l), but overshoot and 
described here terminates, to the steady state tem- then undershoot slightly before the step-by-step 
perature profiles at r = co. method breaks down. A similar behaviour has also 

Figure 3 illustrates that the profiles for the non- been observed for the non-dimensional heat transfer 
dimensional ski.n friction coefficient at the plate on the plate q,,,(z). Furthermore, as time progresses, 
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0.8- 

0.8- 

____ Steady solution at T = 0, f;(q) 

-+ Numerical solution at 7 = 1.18571 
Numerical solution at T = 3.38772 

1 2 3 4 5 6 

77 

e Numerical solution at 7 = 0.22495 
+i+ Numerical solution at T = 0.78201 

0 1 2 3 4 5 6 

17 
Fig. 2. Variation of the non-dimensional velocity function aflaq(q, T) as a function of q at various values 

of T and the steady state solutions at r = 0 and t = co : (a) R = 0.5 ; (b) R = 2. 

the profiles of temperature, &q-,7), and the velocity 
function, af/laq(n, 7), approach and overshoot their 
predicted values at 7 = co near to the plate surface 
whilst further from the plate a monotonic transition 
from the values at 7 = 0 to 7 = co takes place. This 
effect is most noticeable in the velocity profiles in Fig. 
2, but also occurs in the temperature profiles displayed 
in Fig. 1. 

5.3. Resultsfor 7,* < 7 < co 

The restriction of the solution domain to finite 
dimensions is achieved by retaining the value of 
Vm x 15 from Section 5.2 and enforcing the steady 
state solution to apply at 7, = 12 and 7, = 8 for 
R = 0.5 and 2, respectively. Larger values of the par- 
ameters nW and 7, were considered and observed to 
not significantly affect the final solutions presented 
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- Numerical solutions 
. . . . Small time solution, i.e. Equation (28) 

--_- Steady solution at large r, &f:(O) 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 
7 

1.4- 
7 = r* n 

s 
1.3- 

il% 
1.2- 

1.0 

3 

- Numerical solutions 
Small time solution, i.e. Equation (28) 

---- Steady solution at large 7, Rffl(O) 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

Fig. 3. Variation of the non-dimensional skin friction coefficient at the plate a’f//a$(r) as a function of T, 
the small .time solution and the steady state solution r = co, where the transition between the solution 

methods of Sections 4.1,4.2 and 4.3 occur at the indicated times t = f. and rz. (a) R = 0.5; (b) R = 2. 

in the figures. The convergence criterion was set by vergence of this method. The use of the relaxation 
assigning the values E: = lo-” and E: = lo-” for parameter w was successful in increasing the rate of 
the tolerance. These values were shown to produce a convergence. The optimum value was found to be the 
numerical solution correct to about five significant largest value for which the numerical scheme con- 
figures for those parameters under investigation and verged and this was in the range 0.5 < o < 0.7 for the 
had to be made small due to the slow rate of con- majority of solutions presented. 



Step-by-step numerical solution 
Correct numerical solution over 7,’ < r < T, on n = 100, m = 49 grid 

Incorrect numerical solution over 7, < T < 7, on n = 200, m = 98 grid 
Steady solution at large T, &f:(O) 

I I / I I I I 
4.5 5.0 5.5 6.0 6.5 

7 

- Step-by-step numerical solution 
e Correct numerical solution over 7,’ < T < 7, on n = 100, m = 36 grid 
+ Correct numerical solution over 7,’ < T < roe on n = 200, m = 72 grid 
Jt Correct numerical solution over 7,’ < r < T_ on n = 400, m = 144 grid 
+i+ Incorrect numerical solution over 7,’ < T < T, on n = 100, m = 36 grid 
e Incorrect numerical solution over T, < T < T_ on n = 200, m = 72 grid 
& Incorrect numerical solution over T,' < T < 7, on n = 400, m = 144 grid 
____ Steady solution at large 7, Rt$‘(O) 

1.62- 

1.60- 

1.56- 

1.52- 

I 
I I I I I I 

2.5 3.0 3.5 4.0 
7 

Fig. 4. Variation of the non-dimensional skin friction coefficient at the plate 8fia#(r) as a function of r 
and the steady state solution at T = co. Several different mesh sizes are displayed for each of the two 

solutions that exist between z = T.* and r = TV. (a) R = 0.5, (b) R = 2. 
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Transient numerical solutions for the non-dimen- 
sional temperature 0(n, z) and velocity function 
L+fiaq(q, z) were found for the grid spacings h” = 0.15, 
L x 0.15 and h” :Y 0.075, R x 0.075 for both R = 0.5 
and 2, and h’ x 0.0375, & = 0.0375 for R = 2, where a 
suitable value of m = (7, -ra/k”is chosen to give ff as 
near as possible to the desired value. Other mesh sizes 
were considered and for the cases in which h and 
,& differed great!iy no convergent solution could be 
obtained. Under the assumption of an initial linear 
variation for the profiles between r = r,* and r = 7m, 

two different solutions are obtained to the finite- 
difference system (54) (55) and (57). For coarse grids 
the profiles of the non-dimensional skin friction 
coefficient and heat transfer at the plate approached 
limiting values with refinements in mesh size. A trans- 
fer of the solution profiles was then observed to occur 
for finer grid sizes and a second pair of limiting values 
for the skin friction coefficient and heat transfer 
detected. Using these two known solutions for 0(~, z), 

F(q, 7) andf(v], r) separately as initial approximations 
for each of the meshes described above, profiles for 
the skin friction coefficient and heat transfer at the 
plate were derived for each of the two solutions. 

A comparison of the profiles of the skin friction 
coefficient at the plate derived from this matching 
technique are presented in Fig. 4 for both R = 0.5 
and 2. As the mesh size was reduced the numerical 
solutions were observed to approach limiting values 
over the solution domain, where the finest grids used 
for R = 0.5 and 2 required that n = 200, m = 98 and 
n = 400, m = 144, respectively. Again, we do not 
include the corresponding figures for the heat transfer 
at the plate as they give very similar information. In 
each case the two limiting solutions exhibit completely 
different characteristics. The most distinguishing of 
these is the behaviour around the time 7$ where one 
solution for the skin friction coefficient attempts to 
continue the tendencies observed at the end of the 
step-by-step method, whilst the skin friction 
coefficient profiles for the second solution approach 
discontinuous gradients. The physical implications of 
the two different profiles are clearly depicted in Fig. 5 
for R = 2 and have similarly been observed for 
R = 0.5 using the finest grids for which both com- 
pletely converged solutions were achieved. The con- 
tours of the coefficient [1 -~z(iTJJ/iaq)] of a*f/@ 87 and 
a0/& for the correct solution match across 7 = 7;. 

Furthermore, the contour [l -fz(&/iaq)] = 0 which 
divides the regions in which information moves in the 
directions of increasing 7 and decreasing 7 lies wholly 
within the domain T > rz, as expected. The cor- 
responding contour for the incorrect solution are 
entirely inconsistent across the borderline r = 7,* 

between the two methods of solution. The contour 
[l -~r(afia~)] := 0 appears to be attempting to pass 
to times before 7 = 7: and, therefore, in this solution 
information is trying to move across a portion of this 
boundary to 7 \ alues at which the coefficient is known 
to be positive. Clearly, the first of these two limiting 
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’ 5.0 

77 

2.5 

0.0 

12.5 

I-- 

10.0 

7.5 
1 

17 

5.0 

2.5 

0.0 

-I 

0.8 

0.0 2.5 5.0 7.5 
7 

Fig. 5. Contours of the coefficient [l -fr(rYfi&~)] of the 
expression a'f/iaq & and aO/ar as a function of r_ and q for 
both numerical solutions when R = 2 using h x 0.0375, 
k z 0.0375. (a) Physically acceptable solution ; (b) incorrect 

solution. 

profiles is the one which represents both a solution of 
the finite-difference equations (54) (55) and (57) and 
matches the boundary conditions correctly. 

The determination of the physically acceptable 
solution becomes progressively more difficult as the 
grid is refined. For R = 0.5, both solutions could be 
achieved for the two coarser grids h’ x 0.15, k x 0.15 
and h” z 0.075,& w 0.075 investigated and the stability 
of the physically acceptable solution on these grids 
was confirmed by further reductions of the con- 
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vergence tolerances by several orders of magnitude. 
However, for the finer grid h” x 0.0375, k” x 0.0375 
when R = 0.5, all initial approximations to the correct 
solution were observed to gradually diverge from this 
profile and approach the incorrect solution, even with 
small values of the relaxation parameter w x 0.01. 
Thus, this acceptable solution appears to become an 
unstable solution to the finite-difference equations as 
the mesh size is reduced, so that an initial profile close 
to this solution may tend to approach the more stable, 
yet incorrect solution, after a large number of iter- 
ations. Similar instabilities in the correct solution were 
observed for R = 2, whereby the acceptable solution 
could be achieved to any reasonable degree of accu- 
racy for the three mesh sizes described earlier, but 
for the finer grid R x 0.01875, i x 0.01875 all initial 
profiles converged only towards the incorrect solu- 
tion. 
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